Development of Biofuels

Chris Somerville Carnegie Institution, Stanford University, LBNL

We are not running out of fossil fuels

Global Primary Energy Supply by Fuel*:

^{* -} excludes traditional biomass Source: IEA 2004, Jim Breson BP

The world is warming

From: Anders Röj (Volvo Inc.) Agenda 2020 Technology Summit (2004)

CO₂ release rises with per capita GDP

M Hoeffert

Predicted increase in global mean temperature due to CO_2 accumulation

Annual average surface air temperature change from HadCM3 IS92a

Hadley Centre for Climate Prediction and Research, The Met. Office

www.metoffice.com/research/hadleycenter

Potential of underused renewable energy sources

From: Basic Research Needs for Solar Energy Utilization, DOE 2005

~26,000 km² of photovoltaic devices would meet US energy needs

Sequestration vision

Central power plants

Modified from Hoffert et al. Science 298,981

The Sleipner Experiment
1 million tons/y; capacity 600 B tons
7000 such sites needed

www.agiweb.org/geotimes

Combustion of biomass provides carbon neutral energy

90,000 TW of energy arrives on the earths surface from the sun

Amount of land needed for 13 TW at 1% efficiency 5% of land 650 MHa

>2% yield is feasible

Yield of 26.5 tons/acre observed by Young & colleagues in Illinois, without irrigation

Land Usage

Types of biofuels

- · Solid, burned directly
- Diesel
- Sugar to ethanol
- · Cellulose to ethanol

Some plants accumulate oil

Limited potential of biodiesel

65 biodiesel companies in operation, 50 in construction 2006

Oil palm is highly productive (Best yields ~ 10 tonnes/HA)

Greenfuel bioreactor

http://news.com.com/Photos+Betting+big+on+biodiesel/2009-1043_3-5714336.html?tag=st.pr

US Corn Grain Ethanol Plants

AS OF: March 2006

A DOE Ethanol Vision

Modified from Richard Bain, NREL

Steps in cellulosic ethanol production

From: Breaking the Biological Barriers to Cellulosic Ethanol

The challenge is efficient conversion

- Burning switchgrass (10 t/ha) yields 14.6-fold more energy than input to produce*
- But, converting switchgrass to ethanol calculated to consume 45% more energy than produced

Energy consumption

*Pimentel & Patzek, Nat Res Res 14,65 (2005)

Plants are mostly composed of sugars

Lignin occludes polysaccharides

Effect of lignin content on enzymatic recovery of sugars from Miscanthus

D Vrije et al (2002) Int J Hydrogen Energy 27,1381

Lignin biosynthesis COMT C3H 5-Hydroxy-Cinnamic acid p-Coumaric acid H_sco Ferulic acid Sinapic acid H,CO ferulic acid 4CL 4CL 4CL 4CL? 4CL p-CCoA3H? p-Coumaroyl CoA CST COT p-Coumaroyl HO shikimic acid Caffeoyl shikimic acid HO HO p-Coumaroyl quinic acid Caffecyl quinic acid CST or COT H_sco COMT CCOAOMT CCR 5-Hydroxy-feruloyl CoA Ferulayl CoA Sinapoyl CoA Callegyi CoA HLOO H,CÓ C3H p-Coumaraidehyde H,CO Coniferaldehyde Caffeyl aldehyde Sinapaldehyde 5-Hydroxy-H,CO H,CO HO CAD? CAD? CADISAD SAD/CAD coniferaldehyde H,CO CH,OH COMT p-Coumaryl alcohol Caffeyl alcohol 5-Hydroxy-Coniferyl alcohol Sinapyl alcohol H,CO H,CO H,CO conileryl alcohol Syringyl lignin Flavonoids p-Hydroxyphenyl lignin Guaiacyl lignin Current Opinion in Plant Biology

Humphreys and Chapple, Curr Opin Plant Biol 5,224

Irregular xylem (irx) mutants

Turner and Somerville Plant Cell 9,689

Lignin is covalently linked to hemicellulose (xylans)

A cleavable lignin precursor would fundamentally alter preprocessing

rosmarinic acid

Cellulose is recalcitrant to hydrolysis

Possible routes to improved catalysts

- Explore the enzyme systems used by termites (and ruminants) for digesting lignocellulosic material
- Compost heaps and forest floors are poorly explored
- In vitro protein engineering of promising enzymes
- Develop synthetic organic catalysts (for polysaccharides and lignin)

Some cellulytic enzymes are components of a "molecular machine"

From: Breaking the Biological Barriers to Cellulosic Ethanol

Fermentation of all sugars is essential

Steps in cellulosic ethanol production

From: Breaking the Biological Barriers to Cellulosic Ethanol

Nature offers many alternatives to ethanol

- Plants, algae, and bacteria synthesize alkanes, alcohols, waxes
- Production of hydrophobic compounds would reduce toxicity and decrease the energy required for dehydration

Summary of priorities

- Modify plant composition to minimize energy required for depolymerization
- Identify or create more active catalysts for conversion of biomass to sugars
- Develop industrial microorganisms that ferment all sugars
- Develop new types of microorganisms that produce and secrete hydrophobic compounds

US Biomass inventory = 1.3 billion tons

From: Billion ton Vision, DOE & USDA 2005

Effect of 50% stover removal on corn grain yields in eastern NE. (120kg N/ha)

K. Vogel et al., unpublished

Prospective energy crops have not been subject to intensive breeding

Miscanthus sp.

Switchgrass (Panicum virgatum)

Courtesy of Steve Long & Emily Heaton. USDA-NRCS PLANTS Database / Hitchcock, A.S. (rev. A. Chase). 1950. Manual of the grasses of the United States. USDA Misc. Publ. No. 200. Washington, DC.

Harvesting Miscanthus

http://bioenergy.ornl.gov/gallery/index.html

Perennials have more photosynthesis

Courtesy of Steve Long, University of Illinois

Geographic distribution of biomass

Annual precipitation

Annual Average Precipitation

Comments

- Energy crops are expected to be more environmentally benign than production agriculture
 - Low fertilizer and chemical inputs
 - Late-harvest supports biodiversity
 - Mixed cultures possible
 - Many species can be used

Research goals for feedstock improvement

- Minimize inputs
 - Perennial energy crops
 - Biotic and abiotic stress tolerance
- Improve propagation
- Maximize biomass yield
 - Establish breeding tools
 - Develop genetic maps
 - Survey genetic diversity
 - Establish orthology to models
- Optimize composition
 - Facile deconstruction
 - Minimal inhibitor production
 - Maximal productivity

Asian soy rust

Economics of Perennials are Favorable

CROP	Yield	Value	Cost	Profit
	per Acre	\$	\$	\$
Corn (\$4.2/bu) (\$150/t)	160 bu	672	193*	479
Switchgrass (\$50/t)	10 tons	500	138**	362
Miscanthus (\$50/t)	15 tons	750	138**	612

^{*}USDA economic research service 2004

^{**50%} as much fertilizer, no chemicals

Conclusions

- Biofuels are expected be an important part of a carbon neutral energy economy
- There are no insurmountable problems
- Many improvements are possible
- The revolution in mechanistic biology offers enormous untapped potential to make fundamental changes in solar harvesting with plants

The Energy Bioscience Institute

- Partnership between UCB, UI, LBL
- · BP has committed \$500M over 10 years
- Goals include elimination of bottlenecks to biofuels, development of improved biotechnologies for fuel production, and education of scientists and engineers across the relevant disciplines

The EBI has Goals Beyond Biofuels

Research Complementarity

Status

- BP & UCB in discussion about terms of agreement, goal is completion by end of July
- Executive committee organizing operational aspects
- Grant competition currently running, expect to start funding research by October

Goals of the EBI

- Envisioning the future
- Identifying and solving the scientific and technical problems required to enable the development of a cellulosic biofuels industry
- Developing new biotechnologies for enhanced oil recovery, fossil fuel processing & biosequestration
- Educating scientists, policymakers, and the public
- Training a new generation of students

EBI Governance and Oversight

Implementing the program

- Open call for preproposals that address broad goals
- Based on preproposals, PIs will be invited to submit either a project or program proposal
 - Suggestions from executive committee may be attached.
 - Projects will be defined term (EBI associates)
 - Programs will be rolling 3 years with annual reviews (EBI investigators)
- Proposals will be peer reviewed
- EBI investigators will co-locate in EBI space
- · EBI associates will have participation obligations

Helios building is at conceptual design stage

A vision of the Future

http://genomicsgtl.energy.gov/biofuels/index.shtml

HISTORY OF US FEDERAL GOVERNMENT R & D

Risks: Historical Price of Oil

The 1.3 Billion Ton Biomass Scenario

